Some Error Estimates for Periodic Interpolation on Full and Sparse Grids Curves and Surfaces with Applications in Cagd 355

نویسنده

  • Frauke Sprengel
چکیده

We give a uniied approach to error estimates for periodic interpolation on full and sparse grids in certain Sobolev spaces. We imposèperiodic' Strang{Fix conditions on the underlying functions in order to obtain error bounds with explicit constants. x1. Introduction The approximation and interpolation of bivariate periodic functions have been studied for some time. While periodic interpolation by translates on full grids is well investigated for several function spaces, especially Sobolev spaces H 2 (T T 2) (see e.g. 2,3,8]), error estimates for periodic interpolation on sparse grids are studied for functions from Korobov spaces E (T T 2) (see e.g. 1,4]). In this paper, we give a uniied approach to error estimates for periodic interpolation on full and sparse grids for functions from the usual Sobolev spaces H 2 (T T 2) and Sobolev spaces S ;; 2;2 H(T T 2) with dominating mixed smoothness. We consider tensor product interpolation and j-th order blending interpolation. Applying the concept of`periodic' Strang{Fix conditions on the underlying univariate fundamental interpolant, we are able to give error estimates with explicit constants. x2. Univariate Periodic Interpolation by Translates Let d 2 IN be xed. Put d j := 2 j d; j 2 IN 0. We consider continuous 2-periodic functions j deened as fundamental interpolants on the equidistant All rights of reproduction in any form reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Periodic Function Spaces and Interpolation on Sparse Grids

We present a uniied approach to error estimates of periodic interpolation on equidistant, full, and sparse grids for functions from a scale of function spaces which includes L 2 {Sobolev spaces, the Wiener algebra and the Korobov spaces.

متن کامل

Some Error Estimates for Periodic Interpolation of Functions from Besov Spaces

Using periodic Strang{Fix conditions, we can give an approach to error estimates for periodic interpolation on equidistant and sparse grids for functions from certain Besov spaces.

متن کامل

Interpolation on Sparse Gauss-Chebyshev Grids in Higher Dimensions

In this paper, we give a unified approach to error estimates for interpolation on sparse Gauß–Chebyshev grids for multivariate functions from Besov–type spaces with dominating mixed smoothness properties. The error bounds obtained for this method are almost optimal for the considered scale of function spaces. 1991 Mathematics Subject Classification: 41A05, 41A63, 65D05, 46E35

متن کامل

Evaluating optimized digital elevation precipitation model using IDW method (Case study: Jam & Riz Watershed of Assaloyeh, Iran)

A watershed management program is usually based on the results of watershed modeling. Accurate modeling results are decided by the appropriate parameters and input data. Precipitation is the most important input for watershed modeling. Precipitation characteristics usually exhibit significant spatial variation, even within small watersheds. Therefore, properly describing the spatial variation o...

متن کامل

Whitney Elements on Sparse Grids

The aim of this work is to generalize the idea of the discretizations on sparse grids to discrete differential forms. The extension to general l-forms in d dimensions includes the well known Whitney elements, as well as H(div; Ω)and H(curl; Ω)-conforming mixed finite elements. The formulation of Maxwell’s equations in terms of differential forms gives a crucial hint how they should be discretiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997